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4.4 - Electric and Magnetic fields 
 
4.4.92 - Electric fields 
A force field is an area in which an object experiences a non-contact force. Force fields can 
be represented as vectors, which describe the direction of the force that would be exerted on 
the object, from this knowledge you can deduce the direction of the field. They can also be 
represented as diagrams containing field lines, the distance between field lines represents the 
strength of the force exerted by the field in that region.  
 
An electric field is a force field in which charged particles experience a force. 
 
4.4.93 - Electric field strength 
Electric field strength (E) is the force per unit charge experienced by an object in an electric 
field.  

E = Q
F  

Where F is the force exerted on the object and Q is the charge of the object. 
 
This value is constant in a uniform field, but varies in a radial field. (Uniform and radial fields are 
explained in 4.4.115). 
 
4.4.94 - Coulomb’s law 
Coulomb’s law states that the magnitude of the force between two point charges is directly 
proportional to the product of their charges, and inversely proportional to the square of 
the distance between them. 

F =
Q Q1 2

4πε r0
2   

Where ε0 is the permittivity of free space, Q1/Q2 are charges, and r is the distance between the charges. 
 
If charges have the same sign the force will be repulsive, and if the charges have different 
signs the force will be attractive. 

 
Image source: Dna-Dennis,CC BY 3.0, Image is cropped 
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4.4.95 - Electric field strength in a radial field 
Point charges form a radial electric field, you can calculate the electric field strength in such 
a field by using the following formula: 

E =
Q

4πε r0
2  

Where ε0 is the permittivity of free space, Q is the charge, and r is the distance between the charges. 
 
4.4.96 - Electric potential 
Absolute electric potential (V) at a point is the potential energy per unit charge of a positive 
point charge at that point in the field. The absolute magnitude of electric potential is greatest at 
the surface of a charge, and as the distance from the charge increases, the potential 
decreases, so electric potential at infinity is zero.  
 
Whether the value of potential is negative or positive depends on the sign of the charge (Q), 
when the charge is positive, potential is positive and the charge is repulsive, when the 
charge is negative, potential is negative and the force is attractive. 

 
 
4.4.97 - Electric fields between parallel plates 
You can form a uniform electric field using a pair of parallel plates with a potential difference 
across them as shown below. 

 
 
You can calculate the electric field strength (E) in an electric field formed between parallel 
plates by dividing the potential difference across the plates by the distance between them: 
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E = d
V  

Where V is the potential difference across the parallel plates, and d is the distance between them. 
 
 
 
 
4.4.98 - Electric potential in a radial field 
To find the value of electric potential in a radial field you can use the formula:  

V =
Q

4πε r0
  

Where ε0 is the permittivity of free space, Q is the charge, and r is the distance between the charges. 
 
Electric potential difference ( ) is the energy needed to move a unit charge between twoV  Δ  
points.  
 
4.4.99 - Field lines and equipotentials 
Electric fields can be uniform or radial and can also be represented by the following field lines: 

 
The field lines show the direction of the force acting on a positive charge. A uniform field 
exerts that same electric force everywhere in the field, as shown by the parallel and equally 
spaced field lines, whereas in a radial field the magnitude of electric force depends on the 
distance between the two charges.  
 
The distance between field lines represents the magnitude of force, e.g. in the radial field 
diagrams above, as a charge moves further away from the centre, the magnitude of force would 
decrease because the distance between field lines increases. 
 
Electric fields have equipotential surfaces. The potential on an equipotential surface is the 
same everywhere, therefore when a charge moves along an equipotential surface, no work is 
done. Between two parallel plates the equipotential surfaces are planes which are equally 
spaced and parallel to the plates, whereas equipotential surfaces around a point charge form 
concentric circles. 
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You can draw equipotential surfaces by joining points of equal potential in an electric field 
together. 

 
Equipotentials in a uniform field 

 
 
 
 

Equipotentials in a radial field 

 
Image source: Balajijagadesh,CC BY-SA 4.0 

 
4.4.100 - Capacitance 
Capacitance (C) is the charge stored by a capacitor per unit potential difference. 

C =
Q
V  

Where Q is the charge stored, and V is the potential difference across the capacitor. 
 
4.4.101 - Energy stored by a capacitor 
The electrical energy stored by a capacitor (W) is given by the area under a graph of charge 
against potential difference. As potential difference is directly proportional to charge, this 
graph forms a straight line through the origin, meaning the area underneath it is a right angle 
triangle so: 
 

W = 2
1 VQ  

Where Q is the charge stored, and V is the potential difference across the capacitor. 
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You can derive two more variations of the above equation by substituting the formula for 
capacitance into it, as shown below: 

W = 2
1 VQ C =

Q
V  

 
For the first variation, rearrange the equation for capacitance so that its subject is charge (Q), 
and substitute it into the formula for the energy stored by a capacitor: 

VQ = C  
(CV )W = 2

1 × V  
CVW = 2

1 2  
For the second variation, rearrange the equation for capacitance so that its subject is potential 
difference (V), and substitute it into the formula for the energy stored by a capacitor: 

V = C
Q  

QW = 2
1 × C

Q  

W = C
Q2

1 2

 
 
Therefore, you can find the energy stored by a capacitor using the following equations: 

W = 2
1 VQ CV= 2

1 2 = C
Q2

1 2

 
 
4.4.102 - Capacitor charging and discharging 
In order to charge a capacitor you must connect it in a circuit with a power supply and resistor, 
as shown in the circuit diagram below: 
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You could use a data logger to measure the values of potential difference and current in order to 
plot a graph of voltage and current against time. As , you can draw a graph of charge Q = I × t  
against time by measuring the area under the current-time graph. 

 
 
Once the capacitor is connected to a power supply, current starts to flow and negative charge 
builds up on the plate connected to the negative terminal. On the opposite plate, electrons are 
repelled by the negative charge building up on the initial plate, therefore these electrons move 
to the positive terminal and an equal but opposite charge is formed on each plate, creating a 
potential difference. As the charge across the plates increases, the potential difference 
increases but the electron flow decreases due to the force of electrostatic repulsion also 
increasing, therefore current decreases and eventually reaches zero. 

 
To discharge a capacitor through a resistor, you must connect it to a closed circuit with just a 
resistor. 

 
 
Again you could use a data logger to measure voltage and current to plot graphs of voltage, 
current and charge against time. 
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When the capacitor is discharging the current flows in the opposite direction, and the 
current, charge and potential difference across the capacitor will all fall exponentially, meaning it 
will take the same amount of time for each of the values to halve. 
 
The product of resistance and capacitance (RC) is known as the time constant, and this is 
the value of time taken to: 

● Discharge a capacitor to  of its initial value (of charge, current or voltage).37e
1 ≈ 0  

● Charge a capacitor to of its initial value (of charge or voltage)1 ) .63  ( − e
1 ≈ 0  

 
You can calculate the time constant from graphs of current, charge and voltage against 
time, by finding the time where the values are either 0.37 of the initial value if discharging or 
0.63 of the maximum value if charging (for charge or voltage), as shown in the graphs below. 
 

 
 
4.4.103 - Equations for capacitor charging and discharging 
The graph of charge against time follows an exponential curve for capacitor discharging, 
meaning that the equation to calculate the value of charge at a certain point in time involves an 
exponential function, as shown below: 

eQ = Q0
− t
RC  

Where Q0 is initial charge, t is time, C is capacitance and R is resistance of the discharge circuit. 
 
Using the equation above, you can derive related equations for calculating the current and 
potential difference of a discharging capacitor. 
 
To derive the equation for calculating the potential difference, you must use the equation for 
capacitance: 

eQ = Q0
− t
RC C =

Q
V  

 
Rearrange the capacitance equation so that its subject is charge (Q): 

VQ = C  
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At t = 0, the charge is equal to Q0 and the voltage is equal to V0 (while capacitance is constant), 
so: 

VQ0 = C 0  
 
Next, substitute the above equations into the equation for the charge of a discharging capacitor: 

V V eC = C 0
− t
RC  

 
Finally, divide through by capacitance (C) to get: 

eV = V 0
− t
RC  

 
To derive the equation for calculating the current, you must use the equation for potential 
difference above and the formula for Ohm’s law: 

eV = V 0
− t
RC R  V = I  

 
At t = 0, the current is equal to I0 and the voltage is equal to V0 (while resistance is constant), so: 

RV 0 = I0  
 
Next, substitute the above (Ohm’s law) equations into the equation for the voltage of a 
discharging capacitor: 

R ReI = I0
− t
RC  

 
Finally, divide through by capacitance (R) to get: 

eI = I0
− t
RC  

 
The corresponding log equations for charge, current and potential difference over time are: 
 

n Q nQl = l 0 − t
RC n I n Il = l 0 − t

RC n V n Vl = l 0 − t
RC  

 
Where Q0 is initial charge, I0 is initial current, V0 is initial voltage, t is time, C is capacitance and R is 
resistance of the discharge circuit. 
 
You can derive all of these log equations in the same way, below is the derivation of the charge 
log equation. 
 
Firstly, take the natural log of both sides of the discharging equation for charge: 

eQ = Q0
− t
RC  

n Q n(Q e )l = l 0
− t
RC  

 
Simplify the above equation using the rules log(ab) = log(a) + log(b), log(an) = nlog(a) and 
ln(e) = 1. 
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n Q nQ n el = l 0 + l − t
RC  

n Q n Ql = l 0 − t
RC  

 
If you plot a graph of ln(Q) against t, the gradient of this graph is , therefore−1

RC  

.CR = −1
gradient  

 
 
Below are some example questions using the above equations: 
 
Find the approximate value of time constant for the capacitor charging graph below: 

 
Firstly, draw a line across at 63% of its maximum value as the time at which this occurs will be 
the time constant. Read off the value for time at this point. 
 

 
The value of time constant is approximately 2.5 s. 
 
 
A capacitor with a capacitance of 300 μF is discharged through a 400 kΩ resistor, its initial value 
of charge is 5 C, find the value of charge after 5 s. 
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Use the formula .eQ = Q0
− t
RC  

4.8 CQ = 5 × e− 5
300×10 ×400×10−6 3 = 5 × e −5

120 =  
 
4.4.105 - Magnetic flux density, flux and flux linkage 
The magnetic flux density (B) of a magnetic field, is a measure of the strength of the field, and 
it is measured in the unit Tesla. 
 
Magnetic flux (ϕ ) is a value which describes the magnetic field or magnetic field lines passing 
through a given area, and it is calculated by finding the product of magnetic flux density and the 
given area, when the field is perpendicular to the area: 

AΦ = B   
Where B is the magnetic flux density, and A is the area. 
 

 
Image source: Croquant,CC BY-SA 3.0  

 
Magnetic flux linkage (Nϕ ) is the magnetic flux multiplied by the number of turns N, of a 
coil: 

Φ ANN = B   
Where B is the magnetic flux density, A is the area and N is the number of turns. 
 
 
 
4.4.106 - Charged particles moving in a magnetic field 
A force acts on charged particles moving in a magnetic field, this is why a force is exerted 
on a current-carrying wire in a magnetic field, because it contains moving electrons, which are 
negatively charged particles. The magnitude of force (F) exerted on a particle can be 
calculated using the following formula: 

Qv sin θF = B  
Where B is the magnetic flux density, Q is the charge, and v is the velocity of the particle. 
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In the equation above, θ is the angle between the velocity of the particle and the direction of 
the magnetic field. 
 
To find the direction of the force exerted on a charged particle you can use fleming’s left hand 
rule: 
Spread out your thumb, first and second finger so that they are all perpendicular to each other, 
each finger represents a different quantity: 

● ThuMb - represents the direction of the Motion/force 
● First finger - represents the direction of the Field 
● SeCond finger - represents the direction of the Conventional Current (opposite 

direction to electron flow)  

 
Image source: Douglas Morrison DougM,CC BY-SA 3.0 

 
To use this rule simply point the respective fingers in the direction of two known values, for 
example conventional current and field, to find the direction of the third, in this case 
motion/force. 
 
To find the direction of motion/force exerted on a charged particle you can use Fleming’s left 
hand rule, using the second finger as the direction of travel, however if the charge on the 
particle is negative, reverse the direction of your second finger, because the seCond finger 
represents Conventional Current, which flows from positive to negative. 
 
The force exerted is always perpendicular to the motion of travel, which causes charged 
particles to follow a circular path when in a magnetic field, because the force induced by the 
magnetic field acts as a centripetal force. 
 
 
 
4.4.107 - Current carrying conductors in a magnetic field 
When current passes through a wire, a magnetic field is induced - this is true for any long, 
straight current-carrying conductor. The field lines of the induced magnetic field form concentric 
rings around the wire. 
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Image source: Stannered,CC BY-SA 3.0 

 
When a current-carrying wire is placed in a magnetic field, a force is exerted on the wire. To 
find the magnitude of the force (F) you can use the formula: 
 

Il sin θ  F = B  
Where B is the magnetic flux density, Q is the charge, and v is the velocity of the particle. 
 
In the equation above, θ is the angle between the current and the direction of the magnetic 
field. 
 
To find the direction of motion/force exerted you can use Fleming’s left hand rule, using the 
second finger as the conventional current. 

 
 
4.4.108 - Induction of e.m.f in a coil through relative motion between the coil and a 
permanent magnet 
When a conducting rod moves relative to a magnetic field, the electrons in the rod will 
experience a force (as they are charged particles), and build up on one side of the rod, causing 
an emf to be induced in the rod, this is known as electromagnetic induction. This 
phenomenon also occurs if you move a bar magnet relative to a coil of wire, if the coil forms a 
complete circuit, a current is also induced. 
 
 
There are two laws which govern the effects of electromagnetic induction: 
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● Faraday’s law - the magnitude of induced emf is equal to the rate of change of flux 
linkage 

● Lenz’s law - the direction of induced current is such as to oppose the motion causing it 
 
Faraday’s law can be expressed using the following equation: 

ε = N Δt
ΔΦ  

 
Where ε is magnitude of induced emf, and N is rate of change of flux linkage.Δt

ΔΦ  
 
Using the equation for Faraday’s law (above), you can see that the factors affecting the emf 
induced in a coil when there is relative motion between the coil and a permanent magnet are: 

● The number of turns in the coil (N) -  
○ This is directly proportional to the induced emf  

● The magnetic flux density (B) of the field created by the permanent magnet -  
○ This is directly proportional to the induced emf (as )A  Φ = B  

● The area of the cross section (A) of the coil -  
○ This is directly proportional to the induced emf (as )A  Φ = B  

● The time taken (t) for the motion -  
○ This is inversely proportional to the induced emf 

 
4.4.109 - Induction of e.m.f in a coil through the change in current of another coil 
A magnetic field is induced around a current-carrying wire, and so the same is true for a coil of 
current-carrying wire. If the current through this wire changes, the magnetic field will also 
change, meaning that an emf will be induced in a second coil if it is in the magnetic field - this is 
called mutual inductance. The induced emf in the second coil is proportional to the 
change in current in the first coil. 
 
Note that if the second coil forms a complete circuit, a current is also induced.  
 
An example of an application of mutual inductance is a transformer. 
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The factors affecting the emf induced in the second coil are: 

● The magnetic flux density (B) of the field created by the initial coil -  
○ This is directly proportional to the induced emf 
○ This is determined by the number of turns (l) and the current (I) flowing 

through the initial coil ( )Il sin θ  F = B  
● The distance between the two coils -  

○ This is inversely proportional to the induced emf 
○ The further apart they are, the less magnetic flux passes through the second coil 

and so the induced emf is lower 
● The number of turns (N) in the second coil -  

○ This is directly proportional to the induced emf  
● The area of the cross section (A) of the second coil -  

○ This is directly proportional to the induced emf 
● The time taken (t) for change in current -  

○ This is inversely proportional to the induced emf 
 
4.4.110 - Faraday’s law and Lenz’s law 
Lenz’s law states that the direction of induced current is such as to oppose the motion causing 
it, and you can use it to predict the direction of an induced emf. 
 
To demonstrate Lenz’s law, you can measure the speed of a magnet falling through a coil of 
wire, and its speed when falling from the same height without falling through the coil. What you 
will find is that the magnet takes longer to reach the ground when it moves through the coil, this 
can be explained by Lenz’s law: 

1. As the magnet approaches the coil, there is a change of flux through the coil so an 
emf and a current is induced. 

2. Due to Lenz’s law, the direction of induced current is such as to oppose the motion 
of the magnet so the same pole as the pole of the magnet approaching the coil will be 
induced, in order to repel the magnet. This causes the magnet to slow down, due to 
electrostatic forces of repulsion. 

3. As the magnet passes through the centre of the coil, there is no change in flux so no emf 
is induced. 

4. As the magnet begins to leave the coil, there is a change in flux, so a current is 
induced that opposes the motion of the magnet. Therefore, an opposite pole is 
induced by the magnet causing it to slow down once again, due to electrostatic forces of 
attraction. 
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Lenz’s law is a direct consequence of the conservation of energy - it ensures that the 
electrical energy gained by the induction of a current is offset by an equal amount of energy 
being removed.  
 
To exemplify this, consider if the opposite to Lenz’s law was true - the direction of induced 
current is such as to support the motion causing it, and consider the falling magnet example 
above. 

1. As the magnet approaches the coil, there is a change of flux through the coil so an emf 
and a current is induced. 

2. Due to the opposite of Lenz’s law (which we are assuming to be true), the direction of 
the induced current supports the motion of the magnet so the opposite pole to the 
one of the magnet which is approaching the coil is induced, in order to attract the 
magnet. 

3. This causes the magnet to speed up, due to electrostatic forces of attraction, so the 
magnet gains kinetic energy.  

 
The energy of the system has increased through the induction of the current and also through 
the acceleration of the magnet - energy has been created from nothing! This is a violation of 
the conservation of energy, which is why Lenz’s law is as it is. 
 
You can use Faraday’s law to determine the magnitude of induced emf (ε) by using the 
following equation, which describes Faraday’s law: 

ε = N Δt
ΔΦ  

Where N is the number of turns, ϕ is the magnetic flux, and t is the time. 
 
If you combine Faraday’s law and Lenz’s law you get the following equation, which shows that 
the magnitude of induced emf is directly proportional to the rate of change of flux linkage, and is 
in such a direction as to induce a current which opposes the motion causing the induction of 
emf. 
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ε =  − N Δt
ΔΦ  

 
The above equation could be rewritten using the derivative of magnetic flux linkage with 
respect to time: 

ε =  dt
− d(NΦ)  
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